Ox-LDL Induces Dysfunction of Endothelial Progenitor Cells via Activation of NF-κB
نویسندگان
چکیده
Dyslipidemia increases the risks for atherosclerosis in part by impairing endothelial integrity. Endothelial progenitor cells (EPCs) are thought to contribute to endothelial recovery after arterial injury. Oxidized low-density lipoprotein (ox-LDL) can induce EPC dysfunction, but the underlying mechanism is not well understood. Human EPCs were cultured in endothelial growth medium supplemented with VEGF (10 ng/mL) and bFGF (10 ng/mL). The cells were treated with ox-LDL (50 µg/mL). EPC proliferation was assayed by using CCK8 kits. Expression and translocation of nuclear factor-kabba B (NF-κB) were evaluated. The level of reactive oxygen species (ROS) in cells was measured using H2DCF-DA as a fluorescence probe. The activity of NADPH oxidase activity was determined by colorimetric assay. Ox-LDL significantly decreased the proliferation, migration, and adhesion capacity of EPCs, while significantly increased ROS production and NADPH oxidase expression. Ox-LDL induced NF-κB P65 mRNA expression and translocation in EPCs. Thus ox-LDL can induce EPC dysfunction at least by increasing expression and translocation of NF-κB P65 and NADPH oxidase activity, which represents a new mechanism of lipidemia-induced vascular injury.
منابع مشابه
VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملRapamycin Inhibits Oxidized Low Density Lipoprotein Uptake in Human Umbilical Vein Endothelial Cells via mTOR/NF-κB/LOX-1 Pathway.
BACKGROUND Lectin-like oxidized low-density lipoprotein-1 (LOX-1) is the major receptor for oxidized low density lipoprotein (ox-LDL) uptake in human umbilical vein endothelial cells (HUVECs). Previously, we found that rapamycin inhibited ox-LDL accumulation in HUVECs, and this effect was related to its role in increasing the activity of autophagy-lysosome pathway. In this study, we determined ...
متن کاملInhibition of the NF-κB pathway by R65 ribozyme gene via adeno-associated virus serotype 9 ameliorated oxidized LDL induced human umbilical vein endothelial cell injury.
OBJECTIVE NF-κB signaling plays a central role in the regulation of inflammatory responses in atherosclerosis. R65 ribozyme gene suppresses activation of NF-κB pathway, therefore we studied whether R65 gene therapy can ameliorate oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) injury. METHODS AND RESULTS Recombinant adeno-associated virus sero...
متن کاملTim-3 inhibits low-density lipoprotein-induced atherogenic responses in human umbilical vein endothelial cells
Endothelial injury and dysfunction followed by endothelial activation and inflammatory cell recruitment are factors contributing to the initiation and progression of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) promotes inflammation during atherogenesis and lipid deposition in the arterial wall. We observed that stimulation of human umbilical vein endothelial cells (HUVECs) with o...
متن کاملStatins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1.
LOX-1, a receptor for oxidized low-density lipoprotein (ox-LDL), plays a critical role in endothelial dysfunction and atherosclerosis. LOX-1 activation also plays an important role in monocyte adhesion to endothelial cells. A number of studies show that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) reduce total LDL cholesterol and exert a cardioprotective effect. We exami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015